3.141 \(\int \frac {1}{x^3 \log ^{\frac {3}{2}}(a x^n)} \, dx\)

Optimal. Leaf size=69 \[ -\frac {2 \sqrt {2 \pi } \left (a x^n\right )^{2/n} \text {erf}\left (\frac {\sqrt {2} \sqrt {\log \left (a x^n\right )}}{\sqrt {n}}\right )}{n^{3/2} x^2}-\frac {2}{n x^2 \sqrt {\log \left (a x^n\right )}} \]

[Out]

-2*(a*x^n)^(2/n)*erf(2^(1/2)*ln(a*x^n)^(1/2)/n^(1/2))*2^(1/2)*Pi^(1/2)/n^(3/2)/x^2-2/n/x^2/ln(a*x^n)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2306, 2310, 2180, 2205} \[ -\frac {2 \sqrt {2 \pi } \left (a x^n\right )^{2/n} \text {Erf}\left (\frac {\sqrt {2} \sqrt {\log \left (a x^n\right )}}{\sqrt {n}}\right )}{n^{3/2} x^2}-\frac {2}{n x^2 \sqrt {\log \left (a x^n\right )}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Log[a*x^n]^(3/2)),x]

[Out]

(-2*Sqrt[2*Pi]*(a*x^n)^(2/n)*Erf[(Sqrt[2]*Sqrt[Log[a*x^n]])/Sqrt[n]])/(n^(3/2)*x^2) - 2/(n*x^2*Sqrt[Log[a*x^n]
])

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2310

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)*x)/n)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \log ^{\frac {3}{2}}\left (a x^n\right )} \, dx &=-\frac {2}{n x^2 \sqrt {\log \left (a x^n\right )}}-\frac {4 \int \frac {1}{x^3 \sqrt {\log \left (a x^n\right )}} \, dx}{n}\\ &=-\frac {2}{n x^2 \sqrt {\log \left (a x^n\right )}}-\frac {\left (4 \left (a x^n\right )^{2/n}\right ) \operatorname {Subst}\left (\int \frac {e^{-\frac {2 x}{n}}}{\sqrt {x}} \, dx,x,\log \left (a x^n\right )\right )}{n^2 x^2}\\ &=-\frac {2}{n x^2 \sqrt {\log \left (a x^n\right )}}-\frac {\left (8 \left (a x^n\right )^{2/n}\right ) \operatorname {Subst}\left (\int e^{-\frac {2 x^2}{n}} \, dx,x,\sqrt {\log \left (a x^n\right )}\right )}{n^2 x^2}\\ &=-\frac {2 \sqrt {2 \pi } \left (a x^n\right )^{2/n} \text {erf}\left (\frac {\sqrt {2} \sqrt {\log \left (a x^n\right )}}{\sqrt {n}}\right )}{n^{3/2} x^2}-\frac {2}{n x^2 \sqrt {\log \left (a x^n\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 66, normalized size = 0.96 \[ \frac {2 \left (\sqrt {2} \left (a x^n\right )^{2/n} \sqrt {\frac {\log \left (a x^n\right )}{n}} \Gamma \left (\frac {1}{2},\frac {2 \log \left (a x^n\right )}{n}\right )-1\right )}{n x^2 \sqrt {\log \left (a x^n\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Log[a*x^n]^(3/2)),x]

[Out]

(2*(-1 + Sqrt[2]*(a*x^n)^(2/n)*Gamma[1/2, (2*Log[a*x^n])/n]*Sqrt[Log[a*x^n]/n]))/(n*x^2*Sqrt[Log[a*x^n]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/log(a*x^n)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \log \left (a x^{n}\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/log(a*x^n)^(3/2),x, algorithm="giac")

[Out]

integrate(1/(x^3*log(a*x^n)^(3/2)), x)

________________________________________________________________________________________

maple [F]  time = 0.29, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \ln \left (a \,x^{n}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/ln(a*x^n)^(3/2),x)

[Out]

int(1/x^3/ln(a*x^n)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \log \left (a x^{n}\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/log(a*x^n)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(x^3*log(a*x^n)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^3\,{\ln \left (a\,x^n\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*log(a*x^n)^(3/2)),x)

[Out]

int(1/(x^3*log(a*x^n)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \log {\left (a x^{n} \right )}^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/ln(a*x**n)**(3/2),x)

[Out]

Integral(1/(x**3*log(a*x**n)**(3/2)), x)

________________________________________________________________________________________